Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of 10, , and kg s for 1998 FR , 2001 ME , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth.more » « lessFree, publicly-accessible full text available December 17, 2025
- 
            Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV∞ ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time.more » « lessFree, publicly-accessible full text available August 13, 2026
- 
            Abstract In this paper, we investigate the nonprincipal axis (NPA) rotational state of 1I/‘Oumuamua—the first interstellar object discovered traversing the inner solar system—from its photometric light curve. Building upon Mashchenko, we develop a model which incorporates NPA rotation and Sun-induced, time-varying outgassing torques to generate synthetic light curves of the object. The model neglects tidal forces, which are negligible compared to outgassing torques over the distances at which ‘Oumuamua was observed. We implement an optimization scheme that incorporates the NPA rotation model to calculate the initial rotation state of the object. We find that an NPA rotation state with an average period of 〈P〉 ≃ 7.34 hr best reproduces the photometric data. The discrepancy between this period and previous estimates is due to continuous period modulation induced by outgassing torques in the rotational model, as well as different periods being used. The best fit to the 2017 October data does not reproduce the 2017 November data (although the later measurements are too sparse to fit). The light curve is consistent with there being no secular evolution of the angular momentum, which is somewhat in tension with the empirical correlations between nuclear spin-up and cometary outgassing. The complex rotation of ‘Oumuamua may be the result of primordial rotation about the smallest principal axis if (i) the object experienced hypervolatile outgassing and (ii) our idealized outgassing model is accurate.more » « less
- 
            Abstract In this paper, we present an open-source software (Simulator of Asteroid Malformation Under Stress,SAMUS) that simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosities and sizes. This software solves the Navier–Stokes equations on a finite-element mesh, incorporating the centrifugal, Coriolis, self-gravitational, and tidal forces. The primary functionality is to simulate the deformation of minor bodies under the influence of tidal forces. It may therefore be used to constrain the composition and physical structure of bodies experiencing significant tidal forces, such as 99942 Apophis and 1I/‘Oumuamua. We demonstrate thatSAMUSwill be useful to constrain the material properties of Apophis during its near-Earth flyby in 2029. Depending on the material properties, Apophis may experience an area change of up to 0.5%, with similar effects on the photometric brightness. We also applySAMUSto constrain the material dynamic viscosity of 1I/‘Oumuamua, the first interstellar object discovered traversing the inner solar system. ‘Oumuamua experienced a close approach to the Sun at perihelion (q≃ 0.25 au) during which there were significant tidal forces that may have caused deformation of the body. This deformation could have lead to observable changes in the photometric light curve based on the material properties. The application ofSAMUSto produce synthetic observations which incorporate tidal deformation effects demonstrates that no deformation—an infinite dynamic viscosity—best reproduces the photometric data. While these results indicate that ‘Oumuamua did not experience significant tidal deformation, a sophisticated model incorporating nonprincipal axis rotation is necessary to conclusively analyze both ‘Oumuamua and Apophis.more » « less
- 
            We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
